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Numerical simulation of the flow of a supersonic stream of viscous, compressible, 
heat-conducting gas over a cavity is carried out on the basis of kinetically con- 
sistent difference schemes. Different types of flow ("open" and "closed" cavi- 
ties) are considered, the heat fluxes to the walls of the recess are determined, 
and a nonsteady regime of flow over a cavity is simulated. The results obtained 
are compared with known experimental relationships. 

i. Introduction 

Experimentally observed detached flows in recesses, over which a supersonic stream of 
viscous gas flows, have both a steady and a nonsteady character [1-5]. The types of such 
flows have been classified in [5]. Numerical simulation of these flows is urgently needed 
for practical applications of problems of computational hydrodynamics, the complexity of 
which is due to the need for simultaneous allowance for the region of inviscid flow and for 
viscous effects within the boundary layer. Let us cite several of the most typical exam- 
ples of the calculation of such flows. Conjugation of solutions for the compressible bound- 
ary layer above the recess, for the compressible Navier-Stokes equation within the recess, 
and for inviscid flow above the recess outside of the boundary layer has been used in [6] to 
calculate steady detached flow in a cavity. In such an approach, however, an iterative 
process cannot be constructed to join the solutions for calculating nonsteady flows, and in 
that case it is natural to use the complete Navier-Stokes equations for numerical simula- 
tion. In [3], in particular, the averaged Navier-Stokes equations were used in combination 
with McCormack's method, and in [7] the method of splitting with respect ot physical proces- 
ses and spatial variables was used. To calculate pulsation flows in the model of an ideal 
gas, which seems simpler from the standpoint of practical computation, periodic variations 
of the parameters at the entrance boundary must be specified to excite oscillations in the 
cavity [8]. 

In the present paper, which is a continuation of [9], we carry out a series of calcula- 
tions of supersonic flow over cavities by a stream of viscous compressible gas on the basis 
of kinetically consistent difference schemes (KCDSs) with corrections [i0]. Although the 
flow in a cavity has a three-dimensional character, as noted experimentally, the two-dimen- 
sional formulation of the problem has been considered to clarify the main features of that 
flow and reduce the volume of calculations. Laminar flow regimes have been investigated. 
In the calculations we varied the geometrical dimensions of the recesses and studied flow in 
cavities of two different types: "open" and "closed." The heat fluxes to the cavity walls 
were determined in the case of isothermal boundary conditions. The pulsation regime of flow 
was simulated for an adiabatic cavity of the open type. In this case, in contrast to [8], 
we did not have to specify perturbations of the parameters at the entrance boundary to ex- 
cite the oscillations. The results of the calculations have been compared with the known 
experimental data [i, 5]. In the case of pulsation flow, the results were compared with 
known data of natural experiments [2, 4] and with analytic functions [3]. 
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2. Statement of the Problem 

We write the KCDS, with corrctions for the two-dimensional case, in the (x, y) geometry 
(the system is written in dimensionless form): 

+ + 

X 

(1) 

+ 

+ 

- - - -  + ~ + - -  + - - - - -  [(~8~)~ + (~)~1, 
@ Ke 3 2 ; x 2 3 2 ~ y Re Pr  

p = ( ~ - -  1)ps, ~ = cp/c~. ( 2 )  

The  c e n t r a l ,  l e f t - h a n d ,  a n d  r i g h t - h a n d  d i f f e r e n c e  d e r i v a t i v e s  w i t h  r e s p e c t  t o  x ( a n d  t o  y )  
0 - -  0 - -  

a n d  d e n o t e d  b y  t h e  i n d i c e s  x ,  x ,  x ( y ,  y ,  y ) ,  r e s p e c t i v e l y .  

The  s y s t e m  ( 1 )  was  made d i m e n s i o n l e s s  a s  f o l l o w s :  

x::}L, y=}L, ~ = ~ ,  u=~u=, ~=;~, 
c = ~ o ,  p = ~ o u ~ ,  ~ = g s  ~ = ~ ,  

t ='tL/u~, Re = p~u~L/F~. 

The b o u n d a r y  c o n d i t i o n s  u = v = 0 a n d  E w = c o n s t  o r  8 e / a n  = 0 a n d  3 p / a n  = 0 a t  t h e  c a v i t y  
walls were specified for the system (i). 

The geometry of the calculation region is shown in Fig. i. A laminar boundary layer 
of thickness ~ was specified at the left-hand entrance boundary of the region. The distri- 
bution of the horizontal velocity component in the boundary layer was determined from the 
equation [Ii] 

u 3 ! 
- y/5-- (9/&. 

u~ 2 2 

The vertical velocity component was assumed to equal , zero or was determined from the equa- 
tion 

. . . .  ( y / 6 ) ~ - -  ~- (y /~)~ . 
u~ p~u~x , 

The temperature distribution in the boundary layer was specified in accordance with the 
Grocco integral [ii], 

T = T~ -- T~ T~, 1 +  - [ l - - ( u / u ~ ) 2 ] +  - - T ~ ( ! - - u l u ~ ) ,  
T .  T~ T~ 

( 1 where Te= T~ I + r Y -  I N~ is the equilibrium wall temperature; r is the coefficient of 
2 

restitution, equal to (Pr) I/2 for laminar flow; M~ is the Mach number in the undisturbed on- 
coming stream. 

The pressure was assumed to be constant across the boundary layer. The density was de- 
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i. General flow pattern and geometry of the calcula- 
tion region: a) open cavity; b) closed cavity. 
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Fig. 2. Heat fluxes at the bottom of the 
cavity, normalized to the heat flux at the 
entrance boundary, q/q~ (0.5, 0.25, 0.05, 
and 0.025 are the dimensionless depths of 
the cavities); Re = 1.0"103 , M = 1.05. 

termined from the known pressure and temperature using (2). The upper boundary of the cal- 
culation region was located a distance of about five or six times the thickness of the bound- 
ary layer from the horizontal surface, i.e., where the derivatives of the gas-dynamic parame- 
ters normal to the flow are small. The open right-hand boundary of the region lay at a dis- 
tance equal to the length of the recess, where the flow disturbances produced by the cavity 
are small, according to the data of [3, 5]. The first derivatives of all of the gas-dynamic 
parameters with respect to the normal to the boundary were assumed to vanish at the open 
boundaries described above. 

The temperature dependence of viscosity was given by a power-law approximation of the 
Sutherland equation [ii], p/p~ = (e/g~) m, using ~ = 0.75 for the exponent. The heat flux 
to the wall was determined from the equation 

q - ~/(Pr Re)~ (Os/@l~=o. (3 )  

The following initial conditions were used in the calculations: a boundary layer of 
thickness 6 was specified everywhere above the recess. Inside the recess the gas velocity 
was assumed to equal zero, and the temperature and pressure equalled the respective values 
in the undisturbed oncoming stream. The calculations were carried out by the scheme (i) 
using the establishment method. 

Below we briefly give the main results of numerical simulation of the problem of flow 
over a cavity in the above formulation. 

3. Results of Numerical Calculations 

Rectangular Cavity. Flow over a rectangular cavity (H/L = 0.5) was considered. The 
Mach number in the undisturbed oncoming stream was M = 1.3. The Reynolds number, calculated 
from the cavity length L, was Re = 1.2.103 . The Prandtl number was Pr = 0.71 and the ini- 
tial thickness of the boundary layer was 6/H = 0.23. The cavity walls were isothermal, Tw= 
0.2T~. 1 

A general diagram of the flow and the geometry of the calculation region are shown in 
Fig. la. The flow pattern obtained had the following features. The boundary layer, having 
detached from the left-hand edge of the cavity, completely covers the recess and is reat- 
tached, having become somewhat thicker, near its right-hand corner. In the interior of the 
cavity one large, elongated vortex is formed, shifted relative to the geometrical center of 
the cavity toward its right-hand wall. The established type of flow is consistent with ex- 
perimental data obtained in [5]. There it was indicated that cavities having dimensions 0.i < 
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Fig. 3. Pressure p/p~ at the cavity walls 
(dashed line: pressure at the right-hand 
wall; solid line: at the left-hand wall); 
Re = 1.0"103 , M = 1.05. 
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Fig. 4. Pressure p/p~ at the cavity walls 
(dashed lines: pressure at the right-hand 
wall; solid lines: at the left-hand wall) 
for the times tl = 260 and t3 = 270; Re H = 
3.3"104 , M = 1.3. 

H/L ! belong to the type of so-called shallow open cavities, the flow in which is 
typified by the formation of one vortex in the cavity, shifted downstream, and attachment of 
the detached boundary layer at the right-hand edge of the cavity. 

The heat fluxes at the bottom of the cavity and at its walls were calculated from Eq. 
(3) for the given problem. The maximum heat fluxes are in the region near the right-hand 
corner of the cavity, i.e., in the region where the detached boundary layer is reattached. 
The largest flux at the right-hand wall, normalized to the value in the oncoming stream, is 
1.2, and the maximum flux at the bottom is 0.2. 

Cavities of Different Depths. On the basis of a solution of the system (i), we simu- 
lated the flow in cavities of different depths. The depths were chosen so that we could 
analyze two types of flow: in "open" and "closed" cavities. The Mach number was M = 1.05 
and the thickness of the oncoming boundary layer was 6/L = 0.116. The walls of the recess 
were isothermal: T w = 0.2T=. We analyzed cavities with depths H/L = 0.5, 0.25, 0.05, and 
0 . 0 2 5 .  

A typical feature of flow over a cavity of depth H/L = 0.5 is the formation of one 
large vortex in the interior of the cavity and the reattachment of the detached boundary 
layer near the right-hand edge of the cavity. This is a "shallow open cavity" in the clas- 
sification of [5]. The heat fluxes at the vertical walls increase monotonically and have 
maxima near the right-hand and left-hand outer corners of the cavity. The maximum flux at 
the right-hand wall is almost 1.7 times larger than the corresponding flux at the left-hand 
wall, which is related to the attachment of the stream in the vicinity of the upper right- 
hand corner of the cavity. A graph of the flux at the bottom is shown in Fig. 2, marked by 
the number 0.5. The largest flux corresponds to the center of the vortex formed in the cav- 
ity. 

The flow established in a cavity of depth H/L = 0.25 is similar to the flow described 
above. The heat flux at the bottom is given in Fig. 2, marked by the number 0.25. 

We then considered flow over a cavity of depth H/L = 0.05. One large vortex near the 
left-hand wall and a small vortex of opposite circulation in the lower right-hand corner 
were formed in the cavity, and the detached boundary layer was attached at the bottom of the 
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recess. According to the data of [5], a cavity with such a geometry is of the "shallow 
closed" type, the flow in which is characterized by the formation of two detached regions, 
one of which is formed behind the step down from the stream and the second ahead of the step 
up into the stream, as well as by the presence of two vortices of different sizes near the 
right-hand and left-hand corners of the cavity (see Fig. ib). The pressure at the left- 
hand vertical wall of the cavity has the form typical of flow over a down step: the pres- 
sure minimum is located near the upper left-hand corner of the cavity, from which the stream 
detaches, and it is lower than p= (Fig. 3, solid line). The pressure at the right-hand 
vertical wall (Fig. 3, dashed line) is typical of flow over a step up into the stream: the 
pressure maximum is reached somewhat below the upper right-hand corner of the cavity, near 
the attachment point of the stream. For a cavity of the open type, the pressure distribu- 
tion at the right-hand wall is somewhat different (Fig. 4, dashed lines): the pressure max- 
imum lies directly at the right-hand corner of the cavity, rather than below that corner. 
In Fig. 5 we give graphs of the pressure distribution over the bottom of the cavity for flow 
in cavities of the open (H/L = 0.5) and closed (H/L = 0.05) types. The character of the 
pressure variation is consistent with experimental data [i]. The pressure over the bottom 
of an open cavity is almost constant and has a slight minimum near the left-hand wall. A 
closed cavity is characterized by a rise in pressure over the entire length of the recess. 
The heat flux at the bottom of this cavity is shown in Fig. 2, marked by the number 0.05. 

The character of the flow over a cavity of depth H/L = 0.025 is similar to that for H/L = 
0.05. The main ifeatures of the flow are the formation of two vortices of different sizes 
in the cavity and the attachment of the stream at the bottom of the recess. The heat fluxes 
at the vertical walls of the cavity have the same monotonically increasing character as for 
H/L = 0.5. Their maximum values become very close (differing by a few percent), however. 
The heat flux at the bottom is given in Fig. 2, marked by the number 0.025. 

Thus, upon a decrease in the depth of the cavity from H/L = 0.25 to H/L = 0.05, the 
type of flow changes, i.e., from flow in an open cavity to that in a closed cavity. As the 
depth of the cavity varies from H/L = 0.5 to H/L = 0.025, the fluxes at the vertical walls 
decrease, and from differing considerably (the flux at the right-hand wall is about twice 
the flux at the left-hand wall for H/L = 0.5), they become almost equal (for H/L = 0.025). 
The decrease in the depth of the cavity changes the flux at the bottom, the flux for H/L = 
0.025 being more than four times that for H/L = 0.5. The character of the pressure distri- 
bution over the bottom and walls of the recess changes with a change in the depth of the 
cavity. 

Oscillatory Flow Regime. Supersonic flow (M = 1.35) over a rectangular recess (H/L = 
0.5) was considered. The walls of the recess were adiabatic. The initial thickness of the 
boundary layer was ~/H = 0.046. The Reynolds number, calculated from the depth of the re- 
cess, was Re H = 3.3"10 # �9 This problem was calculated on two grids, (67 x 62) and (91 x 83), 

x bunched in x and y, with minimum steps in x and y of hlmin = 6.10 -2 , h y �9 = 2-10 -2 and imln 
h x = 2.10 -2 , h~min = 1"10 -2 respectively. The results of the calculations on these two 2min ' 
grids almost coincide. 

According to the experimental data generalized in [3], the nonsteady shear layer formed 
by detachment from the front edge of the cavity is the main reason for the development of 
pulsations. For pulsations to develop it is also necessary that the cavity be fairly long 
compared with the thickness of the boundary layer, L > 2~6, and that the Mach number satisfy 

I i I 

o ~5 ~o x~ 

Fig. 5. Pressure p/p~ at the bottom of the 
cavity. The numbers 0.5 and 0.05 denote the 

dimensionless depth of the cavity; Re = 1.0- 
103 , M = 1.05. 
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Fig. 6. Variation of the pressure p/p~ 
at the right-hand wall of the cavity as 
a function of time t; ReH = 3.3"104 , M= 
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3.3"104 , M = 1.3. 

the relation M < 2.5. These conditions are satisfied for the problem formulated above. The 
gas stream impinging on the cavity excited low-amplitude pressure pulsations at the bottom 
of the recess and at its walls (according to the data of [4], the amplitude of the pulsa- 
tions must be about i%). The mechanism of formation of the pulsations has been described 
in detail in [4]. The mixing layer interacts with the right-hand wall of the recess, as a 
result of which a pressure wave is formed, which propagates upstream within the recess and, 
upon reaching the left-hand wall, is reflected from it and travels in the opposite direction. 
In Fig. 6 we give a graph of the pressure variation as a function of time at the topmost 
calculation point on the right-hand wall of the cavity. In Fig. 4 we show graphs of the 
pressure distribution on the vertical walls of the cavity (dashed lines for the right-hand 
wall and solid lines for the left-hand wall) for the times t I = 260 and t 3 = 270 designated 
in Fig. 6. Strong return flow occurs in the interior of the cavity (see Fig. 7). The re- 
circulation configuration of the field may be seen; the center of the recirculation region 
is located near the upper corner point of the back wall of the cavity, in agreement with the 
data of [3]. 

The period of the pressure oscillations, which are weakly damped, that develop in the 
cavity is about Tp ~ 19.7 (see Fig. 6), i.e., their frequency is f~ = 0.0507. Rossiter's 
formula for estimating the possible frequencies f of oscillations in a cavity was given in 
[3]: 

f = m u ~ l ( L  ( l l k §  l/a)), (4) 

where m is the mode number; cx/u~ = k is the velocity of the forward propagating wave; a = 
c2/u~ = (i + 0.2M~)I/2/M~ is the velocity of the backward wave. For the conditions of the 
problem under consideration, k = 0.5, : 1.15, and for m = 1 Rossiter's formula gives a period 
T = 18.9 or a frequency f = 0.0528. 

A semiempirical method of calculating the frequencies of discrete components of the 
spectrum of pressure pulsations in a cavity has been given in [4]. According to the data 
of [i], the Strouhal number for the lowest pulsation frequency f0 atM= 1.35 is Sh= fL/u~= 
0.28. In the numerical experiment, Sh = 0.30. 

The above calculations show that using a KCDS with correction for the calculation of 
laminar detached flow of a viscous compressible gas enables one to obtain a reliable quali- 
tative picture of the flow and to calculate with acceptable accuracy some quantitative char- 
acteristics of the flow, even in the nonsteady case, which is complicated to simulate. 
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NOTATION 

h x, hy, grid steps; p, density; u, v, velocity components; p, pressure; E, internal 
energy; E = p(E + 0.5(u 2 + v2)), total energy; p, viscosity coefficient; c = ~I,----~7 
speed of sound; Re, Reynolds number; Pr, Prandtl number; y, adiabatic index; Tw, all tem- 
perature; Te, equilibrium wall temperature; M, Mach number; 6, thickness of the boundary 
layer; q, heat flux at the wall. Indices: =, parameters in the undisturbed oncoming 

0 -- 0 -- 

stream; x, x, x, (y, y, y), central, left-hand, and right-hand difference derivatives with 
respect to x (and to y), respectively. 
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DYNAMICS OF A BOUNDED GAS CAVITY IN A PIPE 

V. G. Kinelev and P. M. Shkapov UDC 532.529.5 

The dynamics of a gas cavity formed in a pipe in the zone of flow separation be- 
hind a cavitating body, and bounded by a diaphragm mounted at a pipeline exit, 
is considered. A mathematical model is proposed, on the basis of which the 
stability of the flow under consideration is investigated. 

At present, more emphasis is being placed on the investigation of the dynamics of cavi- 
tation flows in pipes and flow elements of hydraulic systems. Of particular interest are 
flows with a developed connected cavity that is formed in the zones of flow separation be- 
hind the bluff elements of the structure or by special cavitating bodies. In these regions 
of flow with reduced pressure, a diffusive liberation of the dissolved gas or a buildup of 
dispersed gas bubbles that separate from the incoming flow takes place. When a certain 
critical cavitation number is realized, this results in the formation of a single cavity -- 
a connected cavity with a sharply expressed gas-liquid interface. The adjustment of the 
dimensions of the middle sections of a cavitating body and a pipe, the blowing of the gas 
in the region of separation, as well as flow swirl, either natural or applied, affect sub- 
stantially the intensity of these processes. When the cavitation number diminishes, the 
cavity dimensions increase along the flow, and flow lines at its interface tend to become 
parallel to each other and to the pipe walls in the limit [1-3]. 
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